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A turbidostat is a continuous biochemical reactor in which the biomass concentration is 
controlled by the manipulation of the dilution rate. In this paper, some issues concerning 
the stability and the basins of attraction for the steady state point are discussed for a 
preliminary simple case. The biomass growth is supposed to follow the Monod kinetics 
and the controller acts according to a PI logic.  
 
1. Introduction 
A turbidostat is a fixed volume bioreactor in which the biomass concentration is kept 
constant by manipulating the inlet flow rate inside a feedback control system. In its first 
application (Bryson et al., 1953) the regulation mechanism was quite simple. An optical 
device for the measurement of the turbidity allowed to quantify the biomass 
concentration and control it through a relay device which opened the feeding valve at a 
fixed extent each time the set point value was overtaken. 
The peculiarity of turbidostat is that it can operate at a fixed growth velocity chosen by 
the operator; furthermore its dynamics shows some interesting behaviours as proved by 
the experimental observations performed by Davey et al. (1998) who described the 
existence of chaotic regimes for this system with an aerobic yeast cultivation.  
In this paper, the biomass concentration is supposed to be regulated by a PI controller 
which acts on the inlet flow rate by changing the dilution rate of the system. The role of 
the controller will be evaluated for its influence on both the stability of steady state 
regimes and the amplitude and the structure of  the basins of attraction. 
 
2. The mathematical model 
It is assumed that an unstructured and un-segregated model is accurate enough to 
describe the growth kinetics.  
The dimensionless equations that describe the physical system are reported in Table 1. 
The dimensionless state variables are the biomass concentration, x(t), the substrate 
concentration, s(t), and the value of the dilution rate computed by the controller, dil(t). 
µ(s) indicates the growth kinetics, y(s) is the biomass yield for the substrate, whereas 
Ka, θI and xsp are respectively the dimensionless proportional gain, the integral time and 
the set point value for the controller. The microbial death rate is supposed to be 
negligible.  
In principle, the controller manages the biomass level by increasing the expulsion rate 
of the micro-organisms from the reactor when they are in excess, and by reducing it, in 



the opposite case. It is important to notice that, even if the dilution rate is an inherently 
nonnegative quantity, the controller can also indicate a negative value for the 
manipulated variable, especially when the biomass level is very low. This can be 
classified as a windup phenomenon and the final control element keeps the saturation 
value (dil=0) until the level of biomass becomes high enough to determine a change in 
the sign of the computed dilution rate. From the dynamical standpoint, this makes the 
system a hybrid system: in fact, is described by a C0 piecewise function, in which a shift 
condition (dil=0) describes the transition between two smooth vector fields (Leine, 
2006). In this case, the system obtained for dil≤0 is a batch reactor in which the 
controller output is still calculated according to the PI logic: in this half-space of the 
state space, the biomass level increases to the expenses of the residual substrate content 
until its amount is high enough to make the calculated dilution rate positive again. 
Obviously, it may also happen that the biomass level and the substrate amount are not 
sufficient to determine the transition in the upper half-space and, in this case, the reactor 
will extinguish (it is like a death phase for a batch reactor). In this case it is possible to 
prove that the system diverges (i.e., dil(t) approaches asymptotically -∞).  

Table 1. Equations of the mathematical model. 
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In this paper, the kinetic expression that is adopted is a simple Monod growth with a 
constant biomass yield. 
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3. Steady states 
The determination of the steady states and of their stability is quite straightforward. In 
the lower upper half-space (dil≤0) there is an infinite family of steady states 
parameterised by the variable α∈R-

0 given by Qα= (xsp, 0, α) which can be proved to be 
all unstable (the coordinates are respectively the biomass concentration, the substrate 
concentration and the dilution rate). The one with α=0 lies on the switch surface. In the 
upper half-space (dil>0), it is possible to show that for xsp≥1 there are no steady states 
(such values are physically meaningless because xsp=1 corresponds to the complete 
conversion of the substrate). For xsp<1 there is a single steady state given by  
 
Pss1(xss1, sss1,dilss1)=(xsp, 1-xsp,(1-xsp)/(k+1-xsp))  (9) 



which is the only nontrivial operating condition for the reactor. Obviously, the set point 
value is the only controller parameter which influences the occurrence of steady states. 
In order to describe the stability of the first steady state point, the characteristic 
polynomial of the Jacobian matrix evaluated at Pss1 is computed. The decomposition in 
a first order factor with a negative zero and in a second order polynomial with no sign 
variations indicates the stability of the steady state points independently on the 
controller gain and integral time values. 
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4. Basin of attraction 
Though the controller parameters do not influence the position and the stability of 
steady states for a population described by a Monod growth, their effect is quite evident 
in transient behaviours: in fact the choice of these quantities influences both the 
quickness of response and basins of attraction of a stable steady state.  
The importance of the determination of basins of attraction is connected essentially with 
two applications: the first one is the choice of  a set of initial conditions that can lead the 
system to approach the optimal operating regime; the second one, which is particularly 
important in control issues and is the objective of this paper, is the determination of the 
significance of perturbations that the system is able to withstand without leaving toward 
an undesired asymptotic regime.  
The investigation about the basins of attraction of a stable regime can be a complex 
task. It consists in the determination of their boundary which is the stable manifold of 
an unstable invariant set for the system (Ott, 2002) and whose structure can also be very 
complicated, e.g., fractal (Grabogi et al., 1983). In this case, the almost complete 
absence of information about the nature of the basins of attractions for hybrid systems 
in literature convinced us to lead the computation with a brute force simulation 
approach. It is worth noting that the closest unstable steady state to the stable one lies on 
the switch surface and, hence, it does not exists a neighbourhood of such point in which 
the vector field is C1 regular: this prevent us from computing the stable manifold using 
the stable manifold theorem on this point because its existence is not guaranteed at all. 
In order to simplify the computation, it is supposed that the perturbation from the steady 
state value involves only the state variables x and s, but not dil. This assumption can be 
justified observing that dil is not the actual value of the dilution rate but the quantity 
computed by the controller and, hence, not subject to disturbances. This allows to 
simplify the proposed task because the objective is not to determine the whole basin of 
attraction in the three dimensional state space, but only its intersection with the plane 
given by dil=dilss1. 
The simulations were performed using the built-in Mathematica 5® solver for ODE 
integrated with a shifting system which allows switch between the two vector fields 
each time the transition surface is crossed. 
 



4.1 Effect of the controller parameters on the basin of attraction 
In order to determine the effect of the controller parameters Ka and θI on the basin of 
attraction, a group of simulations are performed adopting the following parameter 
values:     k=1  xsp=0.9 
A high value has been chosen for the set point value (that must always be less than 1) in 
order to verify the response of the system which must approach a steady state (given by 
the point Pss (0.9, 0.1, 9.09⋅10-2) close enough to the shift surface. 
A first set of simulations shows the appearance of the section of the basin for a constant  
Ka (0.1) and different values of  θI  (0.1, 1.0 and 10). The results are reported in Fig. 1. 
In Fig. 2 the effect of the proportional gain is evaluated at three different values (0.1, 1.0 
and 10) for a constant integral time (10)  

A first obvious consideration must be done about the effectiveness of the controller. 
Indeed, perturbations that increase the substrate concentration or the biomass content 
are well tolerated by the system, which manages to recover for almost every choice of 
the controller parameters. Conversely, a diminution of these two state variables, 
especially if simultaneous, may cause the extinction of the reactor itself. When the 
controller parameters are strict (high proportional gains and low integral times), the 
basin of attraction tends to shrink. As it can be observed for the selected values in fig. 1, 
the intersection of the basin with the dil=dilss plane is entirely included in the 
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Figure 1 Intersection of the basin of attraction of the stationary point Pss with the 
plane dil=9.09 10-2 for Ka=0.1 and for different values of θI. 
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Figure 2 Intersection of the basin of attraction of the stationary point Pss with the 
plane dil=9.09 10-2 for θI. =10 and for different values of Ka. 



intersection obtained for a higher value of the integral time for a fixed Ka. The same 
argument can be repeated for decreasing proportional gain at a fixed integral time 
(Fig. 2). It is worth noting that the strictest choices of parameters determine a dangerous 
approach of the steady state point to the boundary of the basin, on the contrary, the 
loosest values allow a satisfying margin of stability for the system. 
 
4.2 Transitions across the switch surface 
In this paragraph, some elements about the time evolution of a perturbed system are 
discussed: in particular the occurrence of windup phenomena during the approach 
toward the stable stationary state will be analysed. In Fig. 3, the intersection of the basin 
of attraction with the dil=dilss for Ka=1 and θI =0.1 is decomposed in three different 

domains: the darkest grey one is the set of perturbed conditions which manage to reach 
the stable steady state without windup occurrence; the medium grey set includes the 
perturbation points whose time evolution shows two crosses through the switch surface 
before approaching the steady state and the light gray one is made of points which 
requires four crosses. In this figure it is possible to notice that when the perturbation 
maintains a biomass level close to the set point value, a simple regulation of the valve 
can establish the stationary regime again; on the contrary, when the perturbation effect 
causes a significant decrease in biomass concentration, the system is compelled to shift 
to a batch operating condition for a certain period of time in order to reach again the 
concentration prescribed by the controller. In particular, there is a zone, characterised by 
high concentration of substrate and low level of biomass in which this recovery requires 
two passages.  
In Fig. 4, the time evolution of the reactor from an initial condition belonging to this last 
category, i.e., (x(0),s(0))=(0.5, 0.7). The dilution rate is promptly reduced by the 
controller up to zero in order to avoid further elimination of biomass and, then, the 
reactor stays for about 4 dimensionless time units in a batch state consuming a 
consistent part of the residual substrate and increasing significantly the biomass level. 
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Figure 3. Decomposition of the intersection of the basin of attraction of the 
stationary point Pss with the plane dil=9.09 10-2 for Ka=1.0 and  θI =0.1 in 
different sets: the grey tone indicates how many passages in the lower half-spaces 
are necessary to recover to the steady state level. 



It is interesting to note in Fig. 3 how 
the boundary of the basin of attraction 
is in contact with points which require 
only two crosses through the switch 
surface: this line represents the border 
between the initial conditions that 
require a passage in the batch 
condition in order to allow the system 
to recover the biomass concentration 
prescribed by the reactor and the points 
from which the system shifts to the 
batch condition but does never manage 
to get out of it. An higher number of 
passages in the batch condition is less 
dangerous than a single one because it 
indicates that the controller produces 
an underdamped oscillatory response 
which is leading the system to the 
stable steady state (and, hence, the 
permanence in the batch condition is 
shorter and shorter).  
 
5. Conclusions 
A microbial population cultivated in a 
turbidostat according to a simple 
growth-associated Monod kinetics is 
able to maintain constant growth 
conditions even for operating 
conditions which are difficult to 
manage. A choice of quite loose 
controller parameters is a good 
compromise between the quickness of 
the response and the stability of the 
system to state perturbations. Passages 

through a batch working condition are a recovery procedure for the bioreactor when the 
biomass level becomes much lower than the set point value.  
 
6. References 
Bryson, V., Szybalski, W., 1952, Science  116, 45. 
Davey, H. M., Davey, Christopher L., Woodward, A. M., Edmonds, A. N., Lee, A. W., 

Kell, D. 1998, Biosystems, 39,43. 
Grebogi, C., Ott, E., Yorke, J. A., 1983, Phys. Rev. Lett., 50, 935. 
Leine, R. I., 2006, Physica D, 223,121 
Ott, E., 2002, Chaos in dynamical systems, Cambridge University Press 

  

Figure 4: Time evolution of the state variables 
from the perturbed condition  
x(0)=0.5; s(0)=0.7 


